

—
QUALITY ASSURANCE & TETST- STANDARDS & PRACTICES

Test Strategy(9AAD134969)

9AAD134969

Department GF-IS ADM Applications Performance & Excellence (APE)

Approver Giulio Bitella, Global Department Manager

Owner Anna Pietras, Quality Assurance Lead (QA)

For the latest distributable version of this and other Quality Assurance& Test standards

please visit this link to ABB Library.

https://share.library.abb.com/api/v4?cid=9AAC819822

Test Strategy(9AAD134969) Applications Performance Excellence

 © ABB Asea Brown Boveri 2018-2019

WHAT IS THIS?

This document describes the test strategy for development and maintenance of

software applications supported by ABB software development units or delivered by

External Vendors. The test strategy lays down the overall approach to verification

and validation to the extent it can be generalized for projects.

The testing process follows from the strategy approach: it defines phases of testing,

relationships between them and their entry and exit criteria.

Intended readers of this document are members of any software development units

mainly Project Managers, Release Managers, Application Mangers, Service Managers,

Developers and Testers. There are two usage scenarios for this document: (1) as a

statement of direction, to drive changes in the way testing is done and (2) to guide

projects in planning of their testing activities.

An important part of the strategy is to describe how software product quality risks

are mitigated, which test cases are performed in the different test phases, and the

distribution of responsibility for the testing.

Test Strategy(9AAD134969) Applications Performance Excellence

 © ABB Asea Brown Boveri 2018-2019

—

TABLE OF CONTENTS

Table of Contents

WHAT IS THIS? .. 2

OVERVIEW ... 1

Assumptions .. 1

Risks .. 1

TEST STRATEGY .. 2

Continuous Testing using CI ... 2

Test Automation .. 2

Risk-based approach to testing ... 3

Regression testing ... 3

TEST PHASES .. 4

Requirement REVIEW ... 5

Design review ... 6

Static analysis .. 7

Code review .. 8

Unit testing .. 8

Component Integration testing ... 9

Functional and non- functional testing .. 10

Usability testing ... 11

Security Testing .. 11

Performance testing .. 12

System integration testing ... 13

User Acceptance Testing... 14

Production deployment testing ... 15

DEFECT MANAGEMENT .. 15

Defect Severity ... 15

Defect Priority .. 16

Defect Statuses and Lifecycle .. 16

ENTRANCE CRITERIA .. 16

Waterfall approach .. 16

Agile approach(Scrum) .. 17

EXIT CRITERIA ... 17

Waterfall approach .. 17

Agile approach(Scrum) .. 17

TEST ENVIRONMENTS .. 18

Test Strategy(9AAD134969) Applications Performance Excellence

 © ABB Asea Brown Boveri 2018-2019

TEST TOOLS .. 19

METRICS .. 19

REPORTING.. 20

TEST PLAN AND STRATEGY IMPLEMENTATION GUIDELINES .. 20

TESTING IN AN OUTSOURCED DEVELOPMENT SETUP ... 21

ROLES AND RESPONSIBILITIES (INCLUDING DEFECT MANGANGEMENT) 22

REFERENCES ... 26

RECOMMENDED READING .. 26

REVISION HISTORY ... 26

Test Strategy(9AAD134969) Applications Performance Excellence

1 © ABB Asea Brown Boveri 2018-2019

OVERVIEW

Assumptions

• For application delivered by Vendor – Vendor must appoint Quality Assur-

ance Lead who will be speaking partner to ABB regarding overall quality of

delivered software/application.

• For application delivered by Vendor - ABB reserves every right to control the

quality of the Intellectual Property (IP) Vendor delivers as a result of agree-

ment made, source code is the primary medium of software IP.

Note : for application from the box and customize it should be defined in

Test Plan.

• For all type of projects: delivered by Vendor or developed in ABB - ABB re-

quires to create and fallow Test Plan.

• The Application Documentation like technical and functional (requirements)

documentation, user stories will be completed prior to the ST, SIT ,UAT ac-

tivities.

• Any changes to requirements after Application Documentation need to be

reviewed and agreed to would be discussed as part of functional backlog

prioritization process and/or the Change Control Process.

• Test Scripts will be created based on user stories or detailed requirements.

• Each test phase is successfully completed as per the exit criteria or agreed

to by all relevant stakeholders before advancing to the next phase.

• Test environments do not experience any significant downtime.

• Code is delivered as per agreed upon time and schedule.

• All above assumptions should be documented in a test Plan that should be

officially review during Gate 3 project review

Risks

• Unavailability of the environment, wrong configuration or too small number

of available environments may cause downtime or delays in testing.

• Unavailability of the tools or their wrong configuration may cause down-

time or delays in testing.

• Lack of requirements, their unclearness or lack of possibility to contact an-

alyst may cause downtime or delays in testing.

• Lack or incompleteness of documentation or its inaccessibility may cause

downtime or delays in testing.

• Lack of details required for test data preparation may cause downtime or

delays in testing.

Test Strategy(9AAD134969) Applications Performance Excellence

2 © ABB Asea Brown Boveri 2018-2019

TEST STRATEGY

Below is a description of the individual test phases which can be implemented

on the projects. The selection of these phases will depend on projects complex-

ity , size and business priorities. It must be defined per each project in Test Plan

(both for Waterfall and Agile projects – in Scrum in particular defined test

phases should be part of Definition of Done).

Continuous Testing using CI

Continuous Integration (CI) is a software development practice that facilitates

immediate feedback on the quality of code.

In the Testing Approach , Continuous Integration is meant foremost as a para-

digm of applying a set of automated testing phases as frequently as possible

during the coding stage, with the aim of

• detecting defects as early as possible

• minimizing the impact of a defect made by a developer on the rest of his

team via immediate feedback on the quality of code and triggering

corrective actions

• minimizing the cost of diagnosing and correcting a problem

• keeping the application under development stable

An exact sequence of builds, checks and deployments depends on several fac-

tors, including:

• inherent complexity of the application under test, e.g., dependency on

other applications, test environment needs

• technology in which the application is being developed and the toolset

used for development

• number tests cases and time needed for their execution

Test Automation

Automated tests are indispensable part of Continuous Testing approach. They

represent a powerful regression test suite and are essential for early error detec-

tion. To maximize return on the investment in test automation, testing approach

will subscribes to the Test Pyramid concept as an example of long term ap-

proach, in which the unit tests form the vast majority of automated tests. They

exercise thoroughly the code of the application and can be maintained by devel-

opers on equal rights with the code that they test. The medium layer of the pyra-

mid is made of tests that exercise the “services” - functionality of the whole ap-

plication or its component that can be accessed via headless (non-UI) interface.

The UI-based tests exercise end-to-end functionality of the application. They are

at the top of the test pyramid, i.e., with the least focus on automation because

they are less thorough, more expensive to maintain and slower than service

tests.

Test Strategy(9AAD134969) Applications Performance Excellence

3 © ABB Asea Brown Boveri 2018-2019

Figure 4. Long-term approach to test automation

The above test pyramid describes an ideal case; an application team may decide

to put more focus UI test automation to compensate for a bad design or missing

unit tests in legacy code. While writing and updating unit tests can be incorpo-

rated into a daily development routine of developers(be part of Definition of

Done for Scrum projects), securing resources for test maintenance is prerequi-

site for starting automation of service and UI tests. The details of Test automa-

tion should be agree and defined in Test Plan for particular project. All type of

automated test must be written with codding standards. Tests automated

scripts must be updated when functionality is changed.

Risk-based approach to testing

Since there might be significant number of test cases and pressure of testing

schedule a tester must choose a subset of possible tests to execute.

Risk-based strategy involves the identification of areas that can be impacted

by introduced changes (impact analysis) and assessment of risk of failures.

Based on the analysis results IS QA Lead should decide on the extent and

depth of testing as well as order of test execution.

Risk-based approach to testing mandates that:

• The list of quality risks should be identified as part of Test Plan and

maintained throughout the project execution

• Tests should be selected and prioritized for execution to mitigate the

risks. Highest quality risks should be addressed as early as possible in the

project. The extent of the risk determines the thoroughness of the test.

• When necessary, new regression test cases should be developed

• The test coverage should be monitored throughout the project execution

Regression testing

Regression testing is performed when the previously tested software or its environ-

ment is changed. It is done to ensure that defects have not been introduced or un-

covered in unchanged areas of the software, as a result of the changes made. Verify-

ing that the bugs are fixed and the newly added features have not created in prob-

lem in previous working version of software. For a software under tests, all existing

test cases form a pool from which a subset of tests can be selected for regression

testing. A regression test suite varies, depending on the outcome of impact analysis

UI-based
Application

Tests

Service Tests:
headless Application
Tests and Application

Integration Tests

Unit tests

Test Strategy(9AAD134969) Applications Performance Excellence

4 © ABB Asea Brown Boveri 2018-2019

for the change, effort needed to execute specific test cases and the acceptable risk.

Test selection criteria should be define in Regression strategy in Test Plan.

a) Manual tests regression

Testers perform functional testing when new build is available for verification. The

intend of this test is to verify the changes made in the existing functionality and

newly added functionality. When this test is done tester should verify if the existing

functionality is working as expected and new changes have not introduced any de-

fect in functionality that was working before this change. Regression test should be

the part of release cycle and must be considered in test estimation. Regression test-

ing is usually performed after verification of changes or new functionality. But this is

not the case always. For the release taking months to complete, regression tests

must be incorporated in the daily test cycle. For weekly releases regression tests can

be performed when functional testing is over for the changes.

b) Automated Regression tests

 Automated Regression Testing is the testing area where we can automate most of

the testing efforts. We run all the previously executed test cases on new build. This

means we have test case set available and running these test cases manually is time

consuming. We know the expected results so automating these test cases is time

saving and efficient regression test method.

Choosing test cases for automation should be done carefully based on defined by

project/test team criteria described in Test Plan (for example: time consuming fac-

tor , big number of dependencies and combination , stability)

ABB recommended tool for Automated Regression tests (functional) is Selenium

Web Driver or HP UTF or Katalon

TEST PHASES

This section describes in more detail Test Phases that were outlined in the previous

sections. Before reading these descriptions, one should note of the following

explanations regarding specific points in the tabular descriptions below:

Accountable: The one role in a project ultimately answerable for the correct and

thorough completion of a testing phase. The accountable signs off (approves) on

testing that Responsible does and it is the main contact for the Release Manager to

provide a plan and report on progress and results. It is assumed that Accountable

has support of the Service Level Manager and Release Manager in her/his duties, e.g.

time is allocated in the project plan to execute the test phase.

Responsible: The core roles to carry out testing activities in a particular testing

stage. Other roles can be delegated to assist in the work required. The Accountable

one can be also the Responsible one.

http://www.softwaretestinghelp.com/automated-regression-testing-challenges-in-agile-testing-environment/

Test Strategy(9AAD134969) Applications Performance Excellence

5 © ABB Asea Brown Boveri 2018-2019

Requirement REVIEW

Test Phase Pur-

pose

• Ensure the completeness and adequacy of the requirements

• Ensure traceability to higher level requirements

• Ensure testability

• Identify and resolve issues

• Prevent misunderstanding before the requirements are trans-

lated into the product

Test Basis • List of functional and non-functional requirements and their

traceability to higher level requirements

• Existing system requirements

• Standards, regulations, rules, plans, and procedures

• Requirements quality evaluation checklist (optional)

Test Items • SRS with attached functional and non-functional require-

ments

• Initial Stakeholder Requests and Traceability Matrix

Scope • All new and changed functional and non-functional require-

ments in the context of the existing system requirements and

initial stakeholder requests

Entry Criteria • System Requirements Specification is documented and ready

for review

• Traceability Matrix is available

Exit Criteria • All problems found in review are adequately addressed

• Approval for SRS is granted

• Review outputs/summary with a list of approved require-

ments and review decision provided to all meeting partici-

pants and other interested parties.

Test Methods • Technical review with development and test teams

• Review meeting with stakeholders’ involvement, possibly with

checklist

• Impact analysis

• Simulations, prototypes, demonstrations or other method de-

fined in the project Plans

Accountable Project Manager/Service Manager

Responsible • Requirements Providers/Stakeholder

• Release Manager

• Functional Analyst

• IS QA Lead or dedicated Tester

Related docu-

ments •

Test Strategy(9AAD134969) Applications Performance Excellence

6 © ABB Asea Brown Boveri 2018-2019

Design review

Test Phase Pur-

pose
• Ensure that the design of a software product, its component

subsystem or its software and hardware environment cor-

rectly implements the driving requirements.

• Ensure that a change to the design will not have an adverse

effect of fulfillment of other functional and non-functional re-

quirements.

• A change to the design includes also selection of a third party

component or development framework.

• A design review can cover multiple quality characteristics or

be focused on one of them, e.g., performance, security, usabil-

ity.

• Design reviews facilitate early detection of design defects and

provide an additional benefit of spreading knowledge about

software product amongst new project members

Test Basis • SRS (Software requirements specification)

• , design documents, interface documents, design review

checklist (optional), static analysis metrics (optional)

Test Items • Design document and/or working application

• Design Review can happen at various points in the project

lifecycle and be concerned with new or implemented design

Scope • For projects following the Gate Model, IS design artifacts

mandatory for Gate 3,

• Design changes selected by the Solution Architect for review

to address a risk, based on the list of identified quality risks in

Test Plan

Entry Criteria • A design document /software ready for review

• Static analysis metrics available, in case they are necessary to

assess specific quality characteristics targeted by a review,

e.g. maintainability

Exit Criteria • All problems found in review are addressed or fixed,

• Review record available,

• Approval for Design document is granted (for Gate 3)

Test Methods Technical review with optional usage of a checklist

Reviews may include simulations, prototypes, demonstrations

or other method defined in a project plans.

Accountable Solution Architect

Responsible Solution Architect

Comments For application delivered by Vendor – Technical Lead from Ven-

dor side must cooperate with Solution Architect on Design Re-

view actions.

Test Strategy(9AAD134969) Applications Performance Excellence

7 © ABB Asea Brown Boveri 2018-2019

Static analysis

Test Phase Pur-

pose
• Automatically detect code defects such as un-initialized vari-

ables, indexing beyond array bounds, memory leaks, and se-

curity vulnerabilities

• Automatically detect coding guidelines violations

• Automatically measure code complexity and duplication

Test Basis • Defined application-specific set of checks: static analysis

tool configuration settings – standard and custom rules

• Coding guidelines

Test Items Source code

Scope Whole source code

Entry Criteria • Static Analysis rules are approved by the Technical Lead

• Compiled, locally built source code committed by a developer

to an integration build.

• Defined thresholds/quality goals

Exit Criteria • For new and changed code, all new alerts shall be analyzed

and resolved

• Metrics/reports are available

Regression Test

Approach

Static analysis is run systematically on the whole source code

following an integration build of the application

Test Automation

Approach

Static analysis tools selected by the application team.

Static analysis is automatically triggered by integration

builds, e.g., via CI Server and fails the build in case of errors

Test Methods Subset of checks offered by the selected tool and additional

custom rules, as defined in the Test Plan

Accountable Solution Architect

Responsible Developers

(designated developer responsible for the tool setup and

rules maintenance)

Comments • ABB recommended tool is SonarQube

• ABB reserves every right to control the quality of the In-

tellectual Property (IP) Vendor delivers as a result of

agreement made, source code is the primary medium of

software IP.

Test Strategy(9AAD134969) Applications Performance Excellence

8 © ABB Asea Brown Boveri 2018-2019

 Code review

Test Phase Pur-

pose

The purpose is to find bad programming practices, not reus-

ing utility code, possible concurrency problems.

Additional benefit of code reviews is not only to find defects

but also to spread knowledge amongst new project members.

Test Basis Code review checklist customized by an application team

Test Items Source code

Scope All new and changed code

Entry Criteria • Code review checklist approved by the Solution Architect

• Compiled, locally built source code committed by a developer

to an integration build. Static Analysis and Unit Tests com-

pleted.

• Coding standards

Exit Criteria All issues resolved

Review records available (for Formal Inspections)

Test Automa-

tion Approach

Optional use of a code review tool for asynchronous, geo-

graphically distributed peer code reviews.

Support for a code-review step in Change Request workflow

item tracking.

Test Methods • Pair-programming

• Walkthrough

• Formal inspection

Accountable Solution Architect

Responsible Solution Architects ,Developers/Development Team

Comments Code review should be part of development culture on daily ba-

sis . In agile project Code Review is included in Definition of

Done.

For application delivered by Vendor- ABB reserves every right

to control the quality of the Intellectual Property (IP) Vendor

delivers as a result of agreement made, source code is the pri-

mary medium of software IP. Note : for application from the

box and customize it should be defined in Test Plan

Unit testing

Test Phase Pur-

pose

The purpose is to detect implementation errors in units of

code, e.g., a method or stored procedure

Test Basis Formal (e.g. a design document) or informal specification of

the code

Test Items Source code

Test Strategy(9AAD134969) Applications Performance Excellence

9 © ABB Asea Brown Boveri 2018-2019

Scope All new and changed code in case the application design per-

mits. An existing module could be re-factored to facilitate

unit tests. The Technical Lead decides the scope and cover-

age targets for unit tests in an application and documents it

in Test Plan

Entry Criteria Compiled, locally built source code committed by a developer

to an integration build

Exit Criteria Unit test coverage satisfies the target level. A tests run de-

tects no errors

Regression Test

Approach

The whole set of unit tests runs systematically on the whole

source code following an integration build of the application.

Test Automation

Approach
• Fully automated using a unit test frameworks and mocking li-

braries selected by the application team

• Unit testing is automatically triggered by integration builds,

e.g., via CI Server and fails the build in case of errors or low

coverage

Test Methods • Control flow and data coverage

• Test Driven Development

Accountable Solution Architect

Responsible Developers/Testers

Related docu-

ments

Comments ABB requires minimum 70% of code covered by unit tests.

Component Integration testing

Test Phase Pur-

pose

The purpose is to detect defects in the integration of compo-

nents into the application: programming-related (incorrect in-

teractions among components) and non-programming-re-

lated (due to incompatibility of components)

Test Basis • Software design documents

• Software architecture (inferred from the working code)

Test Items Application or a subset of its components

Scope New and changed component interface invocations per archi-

tecture partitioning defined by the Solution Architect

Entry Criteria • Changes to component interactions identified

• Formal integration built

Exit Criteria Changes to interfaces and interface invocations covered by

tests. A tests run detects no errors.

Regression Test

Approach

The whole set of integration tests runs systematically on the

whole source code following an integration build of the appli-

cation.

Test Automa-

tion Approach
• Fully automated using a unit test frameworks selected by the

application team

Test Strategy(9AAD134969) Applications Performance Excellence

10 © ABB Asea Brown Boveri 2018-2019

• Integration testing is automatically triggered by integration

builds, e.g., via CI Server and fails the build in case of errors

Test Methods Grey-box methods: Communications Behavior Testing, Proto-

col Testing

Accountable Solution Architect

Responsible Developers

Related docu-

ments

Comments In the specified approach, Developer prepares simultaneously

Unit and Integration Tests for the code he changes according

to the rules set in the Test Plan

Functional and non- functional testing

Test Phase Pur-

pose

The purpose is to assure that functional and non-functional

requirements specified at the level of entire application are

met

Test Basis • System Requirements Specification and other application

level specifications, e.g., regression test suites

• Performance measurements baseline

Test Items Whole application

Scope All new, changed, and impacted areas of the application.

Entry Criteria • Requirements to be verified are approved

• An integration build of the application that implements

new/changed requirements and/or bug fixes passes unit

tests and static analysis and has code review issues resolved

• Specification of the target deployment environment (hard-

ware, software – OS, databases, browsers, cooperating sys-

tems) is approved

• The environment that facilitates the tests is set up

Exit Criteria • Tests that cover all new/changed requirements pass

• Regression tests pass

• All defects are addressed: re-tested and closed or postponed

in a defect tracking system

• Test reports are available and reviewed

Regression Test

Approach

At the Design, Development and Continuous Integration

stage, a set of regression tests is executed in a regular way

following an integration build, e.g., every night, as defined in

Test Plan

At the Acceptance Testing stage:

• A broader set of functional test cases that cover all possibly

impacted areas is selected via analysis of new and changed

requirements. This regression test set is executed at the Ac-

ceptance Testing stage

Test Strategy(9AAD134969) Applications Performance Excellence

11 © ABB Asea Brown Boveri 2018-2019

• All tests that cover new and changed requirements are re-exe-

cuted

• Performance tests are executed

Test Automa-

tion Approach

• A subset of functional tests should be automated for regres-

sion testing run after an integration build

• Additional test cases could be automated for data-driven

testing

• Test tools usage for performance tests

• Test tools usage for testing web services

Test Methods Black-box test methods are used, such as boundary values

tests, positive/negative tests, state based testing, opera-

tional profiles, etc.

Accountable Quality Assurance Lead

Responsible Testers

Related docu-

ments

 Usability testing

Usability validation is a process of ensuring that basic usability checks have been

verified while testing a feature or an application. Usability testing can be a sepa-

rate phase of testing, however 10 usability heuristics designed by Jakob Nielsen

(https://www.nngroup.com/articles/ten-usability-heuristics/)

are to ensure that basic usability validation is done.

The result of usability validation should be a list of recommendations to improve

the usability but also information about what users liked or dislike while using

application. While the focus should be on providing recommendations for the

project team, defects in test management tool should be raised for those issues

that are clearly not in line with acceptance criteria or UX requirements.

Each of the recommendation should receive a severity rating to prioritize the

most serious problems. Severity should be decided based on three factors: fre-

quency of the problem, easiness to overcome the problem, and persistence of

the usability problem.

Based on the prioritization the most critical problems should be listed and

placed in project backlog to be corrected.

Security Testing

Security Testing is type of non-functional testing (white box or black box) that is

done to check whether the application or the product is secured or not.

Usually it is an authorized simulated attack on a system/server/application/de-

vice that looks for security weaknesses, potentially gaining access to the sys-

tem's features and data.

https://www.nngroup.com/articles/ten-usability-heuristics/

Test Strategy(9AAD134969) Applications Performance Excellence

12 © ABB Asea Brown Boveri 2018-2019

In ABB we consider security testing as integral part of overall testing process

for applications developed internally or bought from the third party vendors.

All applications must be mandatory scanned by automatic scanners and pene-

tration testing should be performed by designated teams from Information Se-

curity.

Development teams should perform manual security testing (e.g. using Burp

Suite) and perform vulnerability scanning using Qualys tools. Only combination

of manual testing and automatic security scans will reduce number of potential

vulnerabilities.

Additionally manual penetration testing should be performed. This type of test-

ing is done at the end of the development process. It should be done on final ver-

sion of the code to be implemented into production environment.

Performance testing

For every project performance requirements must be determined and docu-

mented.

Following should be reflected:

• Response times (interactive work) for end users – defined by averages

or percentiles

• Processing times (scheduled activities) – defined by averages or per-

centiles

• Throughput number of operations/transactions/transfer per time unit

(typical hour, peak hour, off-hour)

• Concurrency number of users working with and idle while being logged in

application/system at the same time

• Scalability required ability to be enlarged to accommodate growing

amounts of work or data

• Availability prearranged level of operational performance will be met

during a contractual measurement period – defined in percentage and al-

lowed downtime schedule

Every performance requirement must be reviewed. Additionally it should be ana-

lyzed in different potential and planned contexts affecting performance, for ex-

ample:

• Different volume of data processed

• Range of functionality implemented

• Location class

• Network connection (slow, fast, typical, VPN etc.)

• Operating system

• Kind of device (PC, mobile PC, handheld etc.)

• Workload profile

• Peak hour, typical hour, off hour

• Hardware platform (server and client)

Test Strategy(9AAD134969) Applications Performance Excellence

13 © ABB Asea Brown Boveri 2018-2019

Additional result of design review phase should be a list of risks associated with

performance requirements in regard to used solutions and architecture. For ex-

ample bottlenecks, single points of failure etc. These risks should be monitored

in subsequent phases of the project.

 During static analysis and code review an influence of individual system com-

ponents on previously identified risks associated with performance require-

ments should be identified. Particular attention should be paid to extract the

elements having biggest influence on final performance of the system or appli-

cation.

As soon as the application or system prototypes are ready, measurements of val-

ues specified in the performance requirements should be made. At this stage,

these measurements should be performed on each successive version of the pro-

totype to monitor the risks of exceeding the performance requirements and avoid

regression.

Stage and production testing phases of the project should be verification of the

fulfillment of the previously accepted, verified and validated performance require-

ments.

System integration testing

Test Phase Pur-

pose

The purpose is to exercise interactions between the applica-

tion under test and other applications that are necessary to

accomplish business processes defined in SRS

Test Basis System Requirements Specification

Enterprise architecture design

Interface specification

Test Items System comprised of the application under test and the coop-

erating application(s)

Scope New and changed interface invocations between application

under test and the cooperating applications.

Entry Criteria • Requirements covering the new/changed interactions are ap-

proved

• Integration builds of cooperating applications that imple-

ments new/changed interactions should pass unit tests,

static analysis, code review and core functional regression

tests

• The environment that facilitates the tests is set up

Exit Criteria • Tests that cover all new/changed interactions pass

• Test reports available and reviewed

Test Strategy(9AAD134969) Applications Performance Excellence

14 © ABB Asea Brown Boveri 2018-2019

Regression Test

Approach
• Whenever feasible, cross-application regression tests should

be executed at the Design, Development and Continuous Inte-

gration stage

• They must be included in the regression test suite at Ac-

ceptance Test stage

Test Automa-

tion Approach

Not applicable – manual testing mostly

Test Methods Black Box methods (Requirements, Models, Interfaces, Data)

Accountable Quality Assurance Lead

Responsible Testers

Related docu-

ments

User Acceptance Testing

Test Phase Pur-

pose

To gain confidence that business requirements are met and

the application is fit for deployment

Test Basis Business requirements

Test Items The whole Software Under Test

Scope New/changed/unchanged requirements for the release

Entry Criteria • SRS is fully implemented in the application

• All new/changed requirements are re-tested in the Ac-

ceptance Test Stage by the product test team

• Quality Assurance Lead and Solution Architect grants ap-

proval for UAT

• Validation scenarios prepared by the application team (op-

tional)

• Stable environment (preferably Stage)

Exit Criteria Formal approval is granted for deployment by the designated

end user representatives specified in the Test Plan, e.g. Appli-

cation Owners in the involved business unit

Regression Test

Approach

End users should include testing of unchanged functionality in

their exploratory testing

Test Automa-

tion Approach Not applicable – manual testing

Test Methods Exploratory testing, usage scenarios

Accountable Requirements Provider/Business

Responsible Designated end user representatives and IS QA Lead

Related docu-

ments

Test Strategy(9AAD134969) Applications Performance Excellence

15 © ABB Asea Brown Boveri 2018-2019

 Production deployment testing

Test Phase Pur-

pose

To check that the application is operational in the Production

Environment

Test Basis Deployment Test Suite/Checklist

Test Items Software Under Test deployed in the Production environment

Scope Correctness of installation and configuration

Entry Criteria • Stage Deployment Testing is completed

• UAT Completed

• Approval for deployment to Production is granted (Gate 5)

Exit Criteria • Tests pass

• Test reports are available and reviewed

Test Methods • Checklist

• Usage scenarios

Accountable Application Manager* for Deployment correctness

IS QA Lead for Usage Scenarios

Responsible Developer

Tester

Related docu-

ments
* Please note that depending on Project Setup this role can be held by Solution Archi-

tect or Developer. This need to be agreed and described in Test Plan.

DEFECT MANAGEMENT

If a test is considered to have failed, a corresponding defect must be logged against

it using defect tracking tool. This should be done by a person who executed this test

or encountered the failure in any other way (e.g. using the application). Defect statis-

tics can be used to make testing scope decisions.

Formal defect reporting shall be followed for all testing phases. Roles and responsi-

bilities defined for the Defect Management process are described in section “Roles

and Responsibilities”.

Responsibility chart including people assignment to roles is a part of Test Plan that

must be created for each project.

Defect Severity

Critical Defect: The defect affects critical functionality or critical data. It does

not have a workaround.

Example: Unsuccessful installation, complete failure of a feature.

High Defect: The defect affects major functionality or major data. It has a worka-

round but is not obvious and is difficult.

Test Strategy(9AAD134969) Applications Performance Excellence

16 © ABB Asea Brown Boveri 2018-2019

Example: A feature is not functional from one module but the task is doable if 10

complicated indirect steps are followed in another module(s).

Medium Defect: The defect affects minor functionality or non-critical data. It has

an easy workaround. Example: A minor feature that is not functional in one mod-

ule but the same task is easily doable from another module.

Low Defect: The defect does not affect functionality or data. It does not even

need a workaround. It does not impact productivity or efficiency. It is merely an

inconvenience. Example: Petty layout discrepancies, spelling/grammatical errors.

Defect Priority

Designation for defect priority depends on two factors : delivery model and tool

used in project for defect management . It may be presented as a values from 1

(highest priority) to 4 or as level : Urgent, High, Medium or Low.

Details about defect priority must be described in Test Plan for particular pro-

jects (based on selected tool and delivery methodology).

Defect Statuses and Lifecycle

Process depends on few factors:

• selected delivery methodology

• tools selected to manage tasks and defects

• Application lifecycle – different approach for defects found during develop-

ment phase and different for production issues.

Details must be described in Test Plan for particular projects.

ENTRANCE CRITERIA

Entrance criteria are the required conditions and standards for work product quality

that must be present or met prior to the start of a test phase.

Waterfall approach

 Test Planning:

• All required functional documentation is finished and available before test

planning.

Test Execution:

• Prior test phase has been completed meeting its exit criteria.

• No open critical/major or average severity defects unless the issue is deter-

mined to be low impact and low risk defects remaining from the prior test

phase.

• Development of all items to be tested is completed and deployed on test

environment.

• Testing environment is configured and ready.

• All required information (test data requirements, test cases & scenarios,

Test Strategy(9AAD134969) Applications Performance Excellence

17 © ABB Asea Brown Boveri 2018-2019

testers are familiar with system being tested) is available before test execu-

tion.

Agile approach(Scrum)

Test Planning:

• User Story with clear and univocal Acceptance Criteria is available before

test planning.

• Defined and shared Definition of Done.

Test Execution:

• No open critical/major defects impacting functionality (User Story) under

tests.

• Development of all items to be tested is completed and deployed on test

environment.

• Testing environment is configured and ready.

All required information (test data requirements, test cases & scenarios, testers are

familiar with system being tested) is available before test execution.

EXIT CRITERIA

The set of generic and specific conditions, agreed upon with the stakeholders for per-

mitting a process to be officially completed. The purpose of exit criteria is to prevent

a task from being considered completed when there are still outstanding parts of the

task which have not been finished. Exit criteria are used to report against and to plan

when to stop testing.

More detailed criteria are identified by project manager after consultation with busi-

ness team, analyst and test team on a specific project.

Waterfall approach

Exit criteria are the required conditions and standards for work product quality that

block the promotion of incomplete or defective work products to the next test phase

of the component. Exit criteria shall include the following:

• Successful execution of the test script(s) for the current test phase.

• No open critical, major, or average severity defects unless the issue is de-

termined to be low impact and low risk.

• Component stability in the appropriate test environment.

Agile approach(Scrum)

Exit criteria define when the User Story can be considered as closed, and ready to be

added to the current increment. They shall include:

Test Strategy(9AAD134969) Applications Performance Excellence

18 © ABB Asea Brown Boveri 2018-2019

• Successful execution of the Test Script (common approach is one Test

Script per User Story).

• Meeting all Acceptance Criteria (agile approach allows changes in AC

when agreed with Product Owner).

• No open critical, major or average severity defects (unless the issue is de-

termined to be low impact and low risk).

According to Scrum, above exit criteria should be part of definition of done and should

be confirmed by entire Team.

TEST ENVIRONMENTS

The Test Plan should enumerate environments that will be used to test an applica-

tion.

 A test environment description should specify properties that facilitate:

• systematic recovery of a clean environment

• deterministic test execution

• comparison of the test environment to the target Production environment

This should include:

• hardware for test execution, virtualization solutions, networking setup, e.g.

isolation in a sub-network separated by a firewall,

• software environment into which the application will be deployed: operating

systems, application server and database server versions, browser types and

versions on client machines, and other,

• connections to other cooperating applications,

• options for configuration of the application installation,

• data sets and data feeds to be used in testing.

The exact test environment types and the number of instances depend on the appli-

cation under test and the anatomy of its deployment pipeline. The common environ-

ments are listed below:

Build Verification: facilitates execution of automated tests following an integration

build. This involves initialization of the environment with specific data sets for deter-

ministic tests.

Development: used for frequent, e.g., daily deployment of builds that passed auto-

mated tests but have not been subject to manual regression tests yet. It is used by

developers and testers for preliminary testing of Change Requests/Features and for

development of tests.

Test: a family of environments used for Application and System Integration Testing

to verify formally that a requirement has been implemented and to run regression

tests. These environments should be as close to the Production environment as it is

practical. At the same time, they should be isolated enough to be kept in a stable

configuration. Separate environments might be needed for functional and for perfor-

mance testing. Deployments to Test environments are less frequent than they are to

Test Strategy(9AAD134969) Applications Performance Excellence

19 © ABB Asea Brown Boveri 2018-2019

Development environment due to time it takes to execute a test cycle and the need

to keep the environment stable throughout the cycle.

Stage: ideally, identical to the Production environment, used for validation of the ap-

plication in its intended environment via Stage Deployment Testing and User Ac-

ceptance Testing. The degree of control of this environment by the test team might

be limited. The Stage environment could be switched with the Production environ-

ment at the release time.

Production: used for deployment verification and integration with ABB external ap-

plications that could not be tested in Stage.

TEST TOOLS

Test Scenario Management and Defect Management for new project , ABB recom-

mended to use Azure Dev Ops Services(VSTS).

For Test Automation ABB recommended to use Selenium WebDriver or HP UTF or

Katalon.

For Performance and API testing - ABB recommended to use JMeter /Apica/Gatling.

For Code quality ABB recommend to use SonarQube and ReSharper.

METRICS

Software testing metrics are a way to measure and monitor test activities. If you

measure the correct metrics in a right way and transparently, they will guide you to

understand the team progress towards certain goals and show the team’s successes

and deficiencies.

The whole team approach also critical on the metrics that you will measure and re-

port so it is very important to popper introduce metrics.

Test execution reporting should contain below information:

• Overall number of test cases (by status)

• Test execution trend

• Number of defects and defect severity distribution

• Defect resolution time

• Defect open vs defect closed (trend)

All list is available under this link

For more complex projects more sophisticated metrics for reporting might be cre-

ated. (please note that those ale only example metrics, Test Plan for specific applica-

tion should defined what kind of data should be gather and presented as a metrics).

• Percentage of escaped defects

• Percentage of rejected defects

• Percentage of duplicate defects

• Critical/high severity defects index

http://search.abb.com/library/Download.aspx?DocumentID=9AAD135096&LanguageCode=en&DocumentPartId=&Action=Launch

Test Strategy(9AAD134969) Applications Performance Excellence

20 © ABB Asea Brown Boveri 2018-2019

• Test Effectiveness

• Percentage of test automated (regression)

• Percentage of false negatives (automated tests)

• Test Case Related defects

• Percentage of Passed Tests

• Turnaround time of regression testing

ABB recommended to use metrics build in/or configurated with test management tool.

Details about metrics scope and availability must be agree on Test Plan for particular pro-

ject.

REPORTING

On daily basis test progress should be tracked by Quality Assurance lead. In Agile

(Scrum) daily standups is place when status is provided.

Before each release -Test Team/ Development team should prepare summarize re-

port with overall quality .It should contains test execution status (from each phase

of testing) list of defects and their status and metrics gather during the develop-

ment phase. Test Report must be send to IS QA Lead/Solution Architect/ Service

Manager.

For User Acceptance Testing ABB recommends daily reports about progress and re-

ported issues.

TEST PLAN AND STRATEGY IMPLEMENTATION GUIDELINES

The aim of this section is to specify how to use the Test Strategy document in a pro-

ject. The Test Strategy does not constitute a detailed prescription of how testing

should be done in a project for several reasons:

• Its scope is very broad, covering verification and validation activities across

the whole software development lifecycle

• The Test Strategy will get more precise and include additional important infor-

mation with time and feedback from application teams

• Test Strategy does not follow single software development methodology

• Testing processes need to be adjusted to the project release scope and sched-

ule, quality risks, architecture and other project and application-specific fac-

tors

• The Test Strategy mandates that each project must have its Test Plan docu-

ment that comprehensively prescribes the scope, approach, resources, and

schedule of the testing activities in the project.

Test Strategy is a guideline for building a Test Plan. A Test Plan Template is a com-

panion document that is associated with a version of Test Strategy. A software pro-

ject team is also to follow the referenced processes and procedures that are availa-

ble now, applying their tailoring guidelines to adjust to the project at hand. Addi-

tional process materials, trainings and the tools infrastructure to help carry out

https://share.library.abb.com/api/v4?cid=Root&q=9AAD135107

Test Strategy(9AAD134969) Applications Performance Excellence

21 © ABB Asea Brown Boveri 2018-2019

these processes will be systematically developed following short-term organiza-

tional objectives in regards to ABB Test Strategy.

Test Plan should include

• mapping of the test phases specified in this document into the software de-

velopment process followed by an application team

• specifics of test phase implementation

• release-specific information pertaining to testing, like the schedule of testing

activities, staffing and application quality risks

• quality improvement goals and testing process improvements planned in the

release – optional, in case these goals are not stated elsewhere

• other defined in template like defect management, tools

IS QA Lead is the owner of the Test Plan He/she is also responsible for maintenance

of the document.

TESTING IN AN OUTSOURCED DEVELOPMENT SETUP

Some ABB software products are maintained by External Vendors (an outsourcing

partner) that develops subsequent versions of the product. A degree of control over

the testing process at the outsourcing partner may vary. Nevertheless, the handover

package delivered by an external supplier must include, besides the product itself, an

evidence that testing was done. With respect to testing, the outsourced develop-

ment setup creates the following obligations for the outsourcing partner and the re-

ceiving party in ABB.

Requirements for a contracted outsourcing partner:

• Follow ABB Test Strategy

• Create and execute on its own (Supplier) Test Plan based on ABB Test Plan

template

• Supplier should use Test Management Tool recommended by ABB

• ABB should have access to Test Management Tool in order to check test exe-

cution , traceability with requirements and list of defects

• With each supplied version, provide Release Notes that state whether the ac-

ceptance criteria were met and lists of known issues in the supplied delivera-

bles – missing or unimplemented requirements, open defects

• Upon request, attach to Release Notes:

o a test execution report

o requirement-to-test traceability matrix

o a list of defects closed in testing

• Hand over a test suite that was used in any Phase of Testing – including Test

Automation solution and scripts

• Hand over of Test Cases

Requirements for the receiving party in ABB:

• Maintain Quality Assurance Lead role, a contact to the outsourcing partner on

testing

Test Strategy(9AAD134969) Applications Performance Excellence

22 © ABB Asea Brown Boveri 2018-2019

• Agree with the contracted partner on the defect classification and establish a

channel for communication of defects.

• Include quality expectations in the acceptance criteria for the deliverables.

• Review the Supplier Test Plan and request corrections if necessary.

• Review Release Notes and testing deliverables (test report, test suite, defect

lists) and request corrections if necessary.

• Maintain an internal Test Plan (may contain references to the external Supplier

Test Plan) that includes.

o Functional Testing (might include re-execution of tests provided by the

outsourcing partner as well as execution of test cases developed internally)

o System Integration Testing

o Stage Deployment Testing

o User Acceptance Testing

o Production Deployment Testing

• Maintain tests suites for internal testing; adapt test cases supplied by the out-

sourced partner for internal testing.

ROLES AND RESPONSIBILITIES (INCLUDING DEFECT MANGANGEMENT)

Functional Analyst

Functional Analyst is responsible for gathering, creation, maintenance of the project

requirements. In regards to testing, the Functional Analyst shall:

• validate description of detailed requirements

• aid Developers and Testers in understanding requirements

• participate in Requirements Reviews

• aid stakeholders in User Acceptance Testing

• support defect triage :

Participate to agree on the priority and action for defects as well as for rejecting

and deferring defects. Consults Testers and Development Teams on the

expected solution behavior and provides clarifications. SME’s for business.

Stakeholder/Requirements Provider

The stakeholder may be an external party (business partner, end user) or internal

(development team member) providing requirements. In regards to testing, the

Stakeholder shall do:

• in Requirements Review, validate description of business requirements

• if needed, assist in a Design Review pertaining to requested requirements

• participate in User Acceptance Testing and approve implementation of a

requested requirement

Release Manager (for some cases Project Manager or Application Manager)

Release Manager has the overall responsibility for the release of an application

within the approved scope and budget according to the project plan. In regards to

testing, the Release Manager shall:

Test Strategy(9AAD134969) Applications Performance Excellence

23 © ABB Asea Brown Boveri 2018-2019

• ensure that resources (staff, environments, tools) specified in the approved Test

Plan are available to the project,

• include testing tasks specified in the Test Plan in the overall project plan,

• cooperate with Technical Lead and Quality Assurance Lead in execution of the

Test Plan,

• cooperate with Functional Analyst and IS QA Lead execution of User Acceptance

Tests and solicit the Stakeholders for their approval of implementation of their

requirements and the overall readiness of application for the release.

Solution Architect

• Write up of the technical specifications based on the BBEM

• Create Solution Design with Architecture

• Initiate Architecture Review

• Approves Architecture

• Support the delivery team in their implementation

• Validate the solution from technical prospective before its submission to the

functional validation

• Maintain the technical documentation updated

• Support the preparation of the End User training material

• Support the RUN organization to fix an incident/problem if it affects the Tech-

nical design of a solution.

Technical Lead

The Technical Lead role supervises the development team (Developers) and is re-

sponsible for delivery of technical solution to the requested requirements. In regards

to testing, Technical Lead:

• defines approach and targets for , Unit Testing, Static Analysis and Code Review

• provides input on the above to the Test Plan

• initiates and supervises Design Reviews

• supervises the execution of the aforementioned test phases, reports to Release

Manager on their progress towards acceptance criteria, provides relevant

metrics

• makes sure Developers have necessary skills and resources to perform the

above tests

• makes sure the integration builds provided to the test team fulfill the entry

criteria for this phase

• notifies about the readiness of the project - Implementation Baseline for the

Acceptance Testing,

• participates in the reviews of Quality Risks,

• participates in defect triage meetings,

• coordinates correction of defects found in testing,

Test Strategy(9AAD134969) Applications Performance Excellence

24 © ABB Asea Brown Boveri 2018-2019

• cooperates with Quality Assurance Lead on making the application testable and

on test automation,

• provides environments for testing by the development and test teams

Developer/Development team (or Vendor)

Developer implements a technical solution for the assigned requirements and also

corrects defects. In regards to testing, Developer shall:

• develop Unit and Integration Tests related to the code he delivers as specified in

the Test Plan

• perform basic functional testing of the delivered requirement implementation

or bug fix

• ensure that the code committed to a shared branch for an integration build

does not break the build and passes Static Analysis, Unit and Integration testing

• initiate and participate in Code Reviews

• participate in Requirements and Design Reviews as requested by Technical Lead

• Analyze and fix defects considering all quality assurance best practices. Perform

internal peer review and unit test the defect fix. Prepare deployment package that

could be propagated by IO Team to upper environments (including environment

for which defect was raised).

• if needed, assist testers in automation of functional tests (In Scrum tester is

part of Development team)

IS Quality Assurance Lead

This role is accountable for test phases independent of development: Functional

Testing, System Integration Testing, User Acceptance Testing and Stage Deploy-

ment Testing. Also, he/she is the owner of the Test Plan. IS QA Lead supervises the

test team (Testers).

IS QA Lead shall:

• build the Test Plan for the aforementioned test phases, including:

o product quality risks and their mitigation countermeasures,

o test design methods and test automation,

o estimates for test activities,

o resource requirements (staff, environments, tools),

o schedule (in cooperation with the Release Manager)

• solicit the Technical Lead for parts of the Test Plan related to Design Reviews,

Unit Testing, Integration Testing, Static Analysis and Code Reviews

• supervise the execution of the Functional Testing, System Integration Testing

and Stage Deployment Testing phases by Testers, report to the Release

Manager the progress towards acceptance criteria, provide relevant metrics

• communicate defects found in these test phases, supervise defect management

in the defect tracking system and organize defect triage CCB meetings

Test Strategy(9AAD134969) Applications Performance Excellence

25 © ABB Asea Brown Boveri 2018-2019

• make sure Testers have necessary skills and resources to perform the assigned

tests

• inform the project steering committee on the progress of testing and quality of

the application under test, provide relevant metrics

• notify interested parties about readiness for UAT

• notify interested parties about the readiness of the project - Product/Release

baseline for deployment into the Production environment

• organize reviews of product quality risks

• monitor progress of testing phases towards their acceptance criteria

• cooperate with IS QA Leads of other projects on System Integration Testing

• cooperate with Technical Lead on making the application testable and on test

automation

• contribute to the overall Application Operations test strategy and testing

processes

• for IS QA Lead responsibilities related to Manage Services please refer to

section “TESTING IN AN OUTSOURCED DEVELOPMENT SETUP”

Tester/Development Team

The Testers perform Functional Testing, System Integration Testing , Non-functional

Testing and Stage Deployment Testing. Tester shall:

• apply black-box and gray-box methods to design test cases for functional and

nonfunctional requirements,

• implement test cases, including test automation

• execute test cases and file defect reports

• prepare test data

• create test automation frameworks

• participate in Requirements and Design Reviews as requested by IS QA Lead

• cooperate with Developers on reproducing defects and their analysis

• provide estimates on the assigned testing tasks and report on their progress

• Identifies and logs defects, provides supporting information, and validates the

fix in the product once it is available.

Test Strategy(9AAD134969) Applications Performance Excellence

26 © ABB Asea Brown Boveri 2018-2019

REFERENCES

1. https://www.istqb.org/

2. https://www.istqb.org/downloads/glossary.html

3. https://www.nngroup.com/articles/website-response-times/

4. https://www.nngroup.com/articles/ten-usability-heuristics/

5. https://abb.sharepoint.com/teams/AppTechmgmtteam/Shared%20Docu-

ments/Forms/Al-

lItems.aspx?id=%2Fteams%2FAppTechmgmtteam%2FShared%20Docu-

ments%2FPublic%2FABB-Dev-Code%20Review%20Process%2Epdf&par-

ent=%2Fteams%2FAppTechmgmtteam%2FShared%20Documents%2FPublic

6. https://share.library.abb.com/api/v4?cid=Root&q=9AAD135107

7. http://search.abb.com/library/Download.aspx?Documen-

tID=9AAD135096&LanguageCode=en&DocumentPartId=&Action=Launch

RECOMMENDED READING

1. https://leaksource.files.wordpress.com/2014/08/the-web-application-hack-

ers-handbook.pdf

REVISION HISTORY

Rev. Page Change

De-

scrip-

tion

Author(s) Date

A all initial

version

Anna Pietras 2018-

10-

06

B all update Anna Pietras 2019-

01-

24

https://www.istqb.org/
https://abb.sharepoint.com/teams/AppTechmgmtteam/Shared%20Documents/Forms/AllItems.aspx?id=%2Fteams%2FAppTechmgmtteam%2FShared%20Documents%2FPublic%2FABB-Dev-Code%20Review%20Process%2Epdf&parent=%2Fteams%2FAppTechmgmtteam%2FShared%20Documents%2FPublic
https://abb.sharepoint.com/teams/AppTechmgmtteam/Shared%20Documents/Forms/AllItems.aspx?id=%2Fteams%2FAppTechmgmtteam%2FShared%20Documents%2FPublic%2FABB-Dev-Code%20Review%20Process%2Epdf&parent=%2Fteams%2FAppTechmgmtteam%2FShared%20Documents%2FPublic
https://abb.sharepoint.com/teams/AppTechmgmtteam/Shared%20Documents/Forms/AllItems.aspx?id=%2Fteams%2FAppTechmgmtteam%2FShared%20Documents%2FPublic%2FABB-Dev-Code%20Review%20Process%2Epdf&parent=%2Fteams%2FAppTechmgmtteam%2FShared%20Documents%2FPublic
https://abb.sharepoint.com/teams/AppTechmgmtteam/Shared%20Documents/Forms/AllItems.aspx?id=%2Fteams%2FAppTechmgmtteam%2FShared%20Documents%2FPublic%2FABB-Dev-Code%20Review%20Process%2Epdf&parent=%2Fteams%2FAppTechmgmtteam%2FShared%20Documents%2FPublic
https://abb.sharepoint.com/teams/AppTechmgmtteam/Shared%20Documents/Forms/AllItems.aspx?id=%2Fteams%2FAppTechmgmtteam%2FShared%20Documents%2FPublic%2FABB-Dev-Code%20Review%20Process%2Epdf&parent=%2Fteams%2FAppTechmgmtteam%2FShared%20Documents%2FPublic

QA
Information Systems

Applications Performance Excellence (APE)

Quality Assurance & Test- Standards & Practices

